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ABSTRACT

Callyberynes A and B, polyacetylenic hydrocarbons from Callyspongia sp., have been synthesized for the first time using highly convergent
approaches based on optimized Cadiot −Chodkiewicz (Alami, Vasella) and sequential Sonogashira cross-coupling reactions.

Linear polyacetylenes are a rapidly growing class of sponge
metabolites,1 some of which show remarkable biological
activities (antifungal, antimicrobial, cytotoxic, antiviral,
antitumoral, and enzyme-inhibitory)2 and play important
ecological roles (inducing metamorphosis of sessile marine
animals, preventing fouling by barnacle larvae, and inhibiting
fertilization of starfish gametes).3,4 Although these com-
pounds can exhibit a wide structural variety on both chain
lengths and functionalities, examples of polyacetylenic
hydrocarbons from marine organisms are relatively rare and
characteristic of the family Callyspongiidae (generaSiphonoch-
alina andCallyspongia).

Fusetani4 and Umeyama5 have independently reported the
isolation, from Japanese marineCallyspongiasp., of several

new polyacetylenes structurally related to the known (-)-
siphonodiol (1),6 including C-21 hydrocarbonated cally-
berynes A (2) (also referred to as callypentayne) and B (3)
(Scheme 1), the latter showing a potent metamorphosis-
inducing activity in the ascidianHalocynthia roretzi(ED100

) 0.25 µg/mL).4

Surprinsingly, no publication dealing with the synthesis
of members of this family has been reported to date despite
their increasing number7 and the almost 20 years that have
elapsed since the parent siphonodiol’s first isolation.6a

As part of our ongoing projects on the chemistry of natural
and synthetic polyenes and polyenynes,8 we became inter-
ested in the development of successful approaches to this
family of bioactive polyacetylenes. We herein describe a
highly efficient, convergent route for the first synthesis of
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callyberynes A (2) and B (3) using sequential Sonogashira9

and modified Cadiot-Chodkiewicz10 cross-coupling reac-
tions as key steps.

The retrosynthetic analysis (Scheme 1) led to (1Z,7Z)-1,8-
dibromoocta-1,7-diene (4) as a valuable intermediate. A
strategy involving orthogonally protectedR,ω-dialkynes11

would allow the preparation of the suitable polyyne coun-
terparts7 and8. Stereoselective sequential assembly of di-
cis-dibromodiene4 with the novel polar [(3-cyanopropyl)-
dimethylsilyl]acetylene (CPDMSA)12 (5), to give the common
west fragment6, and with the 1,3-diyne moieties7 or 8
would furnish the respective skeleton frameworks.

Synthesis of intermediate4 is outlined in Scheme 2.
Smooth heterogeneous oxidative cleavage oftrans-cyclo-
hexane-1,2-diol with NaIO4 supported on silica gel afforded
hexane-1,6-dial (9), quantitatively.13 Treatment of9 with
CBr4 and PPh3 under Corey-Fuchs conditions allowed the
bis-elongation of the chain to give 1,1,8,8-tetrabromoocta-
1,7-diene (10), in good yield. Pd-catalyzed hydrogenolysis
of 10 with Bu3SnH14 occurred stereoselectively, at both
endings, to deliver4 in 66% overall yield.

Next, our efforts were directed toward the preparation of
east building blocks7 and8.

Synthesis of tetrayne7 (Scheme 3) involved selective
monohydroxymethylation [nBuLi, (CH2O)n, THF-HMPA]
of commercially available hepta-1,6-diyne to give octa-2,7-
diynol (12) in 64% yield.15 Gratifyingly, Cadiot-Chod-
kiewicz cross-coupling of12 with iodotriisopropylsilylacet-
ylene (14), under Vasella’s modified conditions [Pd2dba3,
CuI, LiI, Et3N, DMSO],10c afforded TIPS-protected propar-
gylic triynol 15 in 95% yield. Dess-Martin periodinane
oxidation and subsequent Corey-Fuchs homologation of the
aldehyde16 to a terminal acetylene, via dibromoolefin17,
provided 1-triisopropylsilylundeca-1,3,8,10-tetrayne (7) in
73% combined yield for the last three steps.

Scheme 1. Retrosynthetic Analysis

Scheme 2. Synthesis of Di-cis-dibromodiene4

Scheme 3. Synthesis of Tetrayne7
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Similar methodologies were employed to synthesize ene-
triyne 8 (Scheme 4). Cadiot-Chodkiewicz cross-coupling
of 6-iodo-5-hexynol (18)16 with trimethylsilylacetylene, under
Alami’s modified conditions [CuI, piperidine],10d gave the
TMS-protected diynol20 in 87% yield. Dess-Martin oxida-
tion and cis-stereoselective Stork’s iodoolefination17 of

aldehyde21 led to (Z)-iodoenediyne22 in 55% combined
yield. Sonogashira cross-coupling [PdCl2(PPh3)2, CuI, pip-
eridine] of 22 with triisopropylsilylacetylene afforded the
differentially bis-protected enetriyne24 in 70% yield. Basic
methanolysis allowed selective removal of TMS group to
obtain (3Z)-1-triisopropylsilylundec-3-ene-1,8,10-triyne (8)
in 95% yield.

With all intermediates in hand, we faced the key final
sequential Sonogashira cross-couplings (Scheme 5). Reaction
of dibromide 4 and CPDMSA (5), to obtain the desired
monocoupled product6, worked satisfactorily [PdCl2(PPh3)2,
CuI, C6H6]18 only after considerable fine-tuning of the
reaction parameters, which included slow addition of alkyne
to an excess of dibromide (1:2.5 relative molar ratio) and
use ofn-BuNH2 as a base, giving rise to (1Z,7Z)-1-bromo-
10-[(3′-cyanopropyl)dimethylsilyl]deca-1,7-dien-9-yne (6) in
77% yield. CPDMS-acetylene’s high-polarity allows for
simple and high-yield chromatographic separation of the
coupling products.19

Although few examples of Sonogashira couplings with 1,3-
diynes are known, mostly due to the difficulties associated
with the synthesis and the stability of such intermediates,20

the reactions of (Z)-vinylbromide6 with either of the two
1,3-diyne moieties7 or 8 occurred smoothly [PdCl2(PPh3)2,
CuI, pyrrolidine, rt] to give stable skeleton frameworks26
and27 in 74 and 68% yields, respectively. Finally, fluoride-
induced cleavage of both terminal silyl-protecting groups led
to the target callyberynes A (2) and B (3) in 93 and 90%
yields, respectively. Their physical and spectroscopic data
(1H NMR, 13C NMR, MS, IR) were found to be identical in
all respects with those reported for the natural products.4,5

In summary, we have described for the first time an
expeditious synthesis of callyberynes A (2) and B (3), starting
from easily available materials and using highly convergent

Scheme 4. Synthesis of Enetriyne8

Scheme 5. Completion of the Synthesis of Callyberynes A and B
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approaches, which involved modified Cadiot-Chodkiewicz
and sequential Sonogashira cross-coupling reaction as key

steps.21 The synthesis of other members of this family of
bioactive marine polyacetylenes, including parent (-)-
siphonodiol (1), are now in progress in our laboratory and
will be reported elsewhere.22
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